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“Statistical Thermodynamics of Strong Interactions”

I Hagedorn (1965) applied a thermodynamical description to high-energy
collisions:

I Limiting temperature T0 = 158± 3 MeV

I Hagedorn (1968)

I Limiting temperature T0 = 160 MeV
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“Statistical Thermodynamics of Strong Interactions”

I Hagedorn (1970)

I The number of hadronic states between m and m + dm is given
asymptotically by

lim
m→∞

ρ(m)dm =
a

m5/2
exp

[
m

T0

]
dm

I T0 is “the highest possible temperature”

A. Bazavov (BNL) Tc in QCD May 24, 2012 4 / 43



Reinterpretation of T0

I After the discovery of asymptotically-free theories existence of the
limiting temperature was reinterpreted as a transition to a new phase of
matter, quark-gluon plasma

I Collins, Perry (1975), Cabbibo, Parisi (1975), conjectured phase
structure is shown (left), current expectations (right)
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Hadron Resonance Gas model

I Following Hagedorn’s picture, the Hadron Resonance Gas model1

approximates the spectrum with currently known states from PDG

pHRG/T 4 =
1

VT 3

∑
i∈ mesons

lnZM
mi

(T ,V , µX a )

+
1

VT 3

∑
i∈ baryons

lnZB
mi

(T ,V , µX a ),

where

lnZM/B
mi

= ∓Vdi

2π2

∫ ∞
0

dkk2 ln(1∓ zie
−εi/T ) ,

with energies εi =
√

k2 + m2
i , degeneracy factors di and fugacities

ln zi =
∑

a

X a
i µX a/T .

1Hagedorn (1965), Dashen, Ma, Berstein (1969), Venugopalan, Prakash (1992)
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High-temperature phase and perturbation theory
I Deconfinement is signaled by liberation of degrees of freedom with quark

and gluon quantum numbers
I The high-temperature phase (due to asymptotic freedom) is accessible2

to perturbation theory
I Recent results by Strickland et al. (2011) in 3-loop hard-thermal-loop3

perturbation theory are shown

2Kapusta (1979)
3Braaten, Pisarski (1990)
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Chiral symmetry restoration

I The high-temperature phase is chirally symmetric, a chiral symmetry
restoration transition is expected

I The quark condensate should disappear at some temperature, early
estimates, for instance, Gerber, Leutwyler (1989) give Tc = 190 MeV
(170 MeV in the chiral limit)
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Early lattice results

First study of the deconfinement transition in SU(2) pure gauge theory:

I McLerran, Svetitsky (1981) Tcr = 200 MeV, Polyakov loop (left)

I Kuti et al. (1981) Tc = 160± 30 MeV,

I Engels et al. (1981) Tc = 210± 10 MeV, energy density (right)
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SU(3) pure gauge theory
I Extensive study of SU(3) pure gauge theory Boyd et al. (1996),

first-order phase transition, Tc = 260 MeV, the equation of state is
shown.

I Pure gauge theory – no (conceptual) problem in identifying the
transition temperature
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Pure gauge vs QCD
The Polyakov loop:

Lren(T ) = z(β)Nτ Lbare(β), Lbare(β) =

〈
1

3
Tr

Nτ−1∏
x0=0

U0(x0,~x)

〉

I Related to the free energy of a static quark anti-quark pair
Lren(T ) = exp(−F∞(T )/(2T ))
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I The increase of Lren(T ) (and
decrease of F∞(T )) is related to
the onset of screening at higher
temperatures.

I The order parameter in pure
gauge theory but not in full QCD,
the behavior in SU(2), SU(3) and
2+1 flavor QCD is quite different!
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Pure gauge vs QCD
I Pure guage = infinitely heavy quarks
I Real world = almost massless quarks (mu,md � ΛQCD)
I Pisarski, Wilczek (1984) discussed possible behavior in the chiral limit,

Brown et al. (1990) later attempted to address this problem on the
lattice, conjectured phase diagram (left),

I a more recent study by Ding et al (2011) puts an upper bound
mπ = 75 MeV (right)
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I Where is the real world in this phase diagram?
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2+1 flavor QCD
I Lattice QCD calculations of mid-2000’s: Bernard et al. (2005), Cheng et

al (2006), Aoki et al (2006) indicate that at the physical quark masses
the transition is indeed an analytic crossover (at µ = 0)

I If there is no genuine phase transition, is it possible to identify some
transition temperature? Is there one? Are there many?
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Transition temperature(s)

I Bernard et al. [MILC] (2005) Tc = 169(12)(4) MeV (chiral and
deconfinement)

I Cheng et al. [RBC-Bielefeld] (2006) Tc = 192(7)(4) MeV (chiral and
deconfinement)

I Aoki et al. [BW] (2006)-(2010) Tc = 151(3)(3) MeV (chiral),
Tc = 175(4)(3) MeV (deconfinement)

I Bazavov et al. [HotQCD], PRD85 (2012) 054503
Tc = 154(9) MeV (chiral), no Tc associated with deconfinement
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Lattice QCD

I An observable O in the path integral representation of QCD in the
imaginary time (Euclidian) formalism:

〈O〉 =
1

Z

∫
Dψ̄DψDA O exp(−S),

Z =

∫
Dψ̄DψDA exp(−S), S =

∫
d4xLE ,

where S is the action of the theory.

I Integrals may not be expanded (no small parameter), but may still be
evaluated by other means.

I Lattice4 – discrete Euclidian space-time, serves as a regulator (momenta
are bound) and allows for stochastic evaluation of path integrals,

I quarks live on sites and gluons on links as SU(3) matrices

Ux,µ = P exp


ig

Z x+aµ̂

x

dyν Aν(y)

ff
.

4Wilson, Phys. Rev. D 10, 2445 (1974)
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Lattice QCD

I Lattice action
S = SG + SF , SF =

X
x,y

ψ̄xMx,yψy

(Mx,y is the fermion matrix) preserves the gauge symmetry, but there is the infamous
fermion doubling problem – 16 species of fermions in 4D.

I Staggered fermions5 remove the 4-fold degeneracy, reduce 16 to 4 (call them tastes
to distinguish from physical flavors), preserve a part of the chiral symmetry at
non-zero lattice spacing.

I Rooting procedure6 is used to further reduce the number of species.

I Irrelevant operators (that vanish in the continuum limit) can be added to the lattice
action to remove leading discretization effects – the idea of improved actions7.

I The p48, asqtad9 and HISQ10 actions have similar improvement at high temperatures
and differ by the degree of improvement at low temperatures.

5Kogut and Susskind, Phys. Rev. D 11, 395 (1975)
6Sharpe, PoS LAT2006, 022 (2006), Creutz, PoS LAT2007, 007 (2007)
7Symanzik, Nucl. Phys. B 226, 187 (1983)
8Heller, Karsch and Sturm, Phys. Rev. D 60, 114502 (1999)
9Orginos and Toussaint, Phys. Rev. D 59, 014501 (1999)

10E. Follana et al., Phys. Rev. D 75, 054502 (2007)
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Lattice QCD

I Integrate fermionic degrees of freedom explicitly, then introduce bosonic
fields to exponentiate the fermionic determinant:

Z =

∫ ∏
x,µ

dUx,µ (det M(U))1/4 exp{−SG}

=

∫ ∏
x,µ

dUx,µ

∏
x

[dΦ†xdΦx ] exp{−SG − Φ†(M†M)−1/4Φ}.

I If the weight is real this resembles canonical ensemble and we can use
importance sampling techniques to estimate the integrals stochastically.

I Develop a Markov Chain Monte Carlo procedure to sample the phase
space.

I Temperature is set by compactifying the temporal dimension,
T = 1/(Nτa), hold Nτ fixed and vary a.

I Lower temperatures – coarser lattices.

I Establish lines of constant physics (LCP), i.e. change bare quark masses
with lattice spacing such that mπ, mK are fixed.
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HISQ action

I Highly – More improvement compared to previously used staggered
actions (e.g., asqtad).

I Improved – Adding higher-order (irrelevant) operators to the action
allows for suppression of the discretization effects at O(a2).

I Staggered – A particular fermion discretization scheme which partially
deals with the fermion doubling problem, conserves a part of the chiral
symmetry on the lattice and is relatively cheap to simulate numerically.

I Quarks.
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HISQ action

Smearing level 1
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HISQ force
I Calculate as the derivative of the action using the chain rule:

∂SF

∂U
=
∂SF

∂X

∂X

∂W

∂W

∂V

∂V

∂U
,

I where
I U – fundamental gauge links
I V – fat links level 1
I W – reunitarized links
I X – fat links level 2

I For projecting to U(3) we have chosen

W = VQ−1/2, Q = V †V .

I To calculate the inverse square root one can apply the Cayley-Hamilton
theorem11

Q−1/2 = f0 + f1Q + f2Q
2.

(All derivatives can be evaluated analytically!)
I For singular matrices V we use the singular value decomposition (SVD)

algorithm:

V = AΣB†, A,B ∈ U(3) → W = AB†.
11Morningstar and Peardon, Phys. Rev. D 69, 054501 (2004),
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Example of reunitarization for U(1)

I Let V = r e iθ, then W = e iθ.

I The derivative

∂W

∂V
=

(
∂W

∂V

)
V †

=
∂(W ,V †)

∂(V ,V †)

=
∂(W ,V †)

∂(r , θ)
· ∂(r , θ)

∂(V ,V †)
=

1

2r
.

I For the matrix case the derivative is dominated by the smallest singular
value of smeared link V .
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Change in the action and fermion force
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Filtered fermion force

I To deal with exceptionally large forces we introduce an “eigenvalue
filter”.

I In the fermion force, if the lowest eigenvalue of a smeared link V is
smaller than a certain cutoff, we replace

Q−1/2 → (Q + δI )−1/2,

where δ is typically set to 5 · 10−5.

I This effectively makes the guiding Hamiltonian slightly different from the
original Hamiltonian, however, the integration algorithm by construction
is reversible and area preserving

I With the HISQ action we use the RHMC algorithm, so the accept/reject
step at the end of MD trajectory ensures correct equilibrium distribution.
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Taste symmetry

I Staggered fermion discretization describes a theory with four tastes. The
rooting procedure (reducing four flavors to one by taking the fourth root
of the fermion determinant) amounts to averaging between staggered
tastes.

I Four tastes are not equivalent at non-zero lattice spacing because the
taste symmetry is broken.

I As a result, only one of the pseudo-scalar mesons is massless in the chiral
limit and the other 15 pseudo-scalar mesons have masses of order a2.

I Violations of the taste symmetry have been identified as the dominant
source of the cutoff effects at O(a2) in the asqtad and p4 actions. They
lead to distortion of the hadron spectrum at non-zero lattice spacing.

I In thermodynamics calculations deviations from the physical hadron
spectrum show up at low temperatures, where agreement with the
Hadron Resonance Gas (HRG) model is expected.

I The cutoff effects can be reduced either by going to finer lattices (e.g.,
asqtad Nt = 8 to Nt = 12) or by using an action with higher degree of
improvement (e.g. HISQ).
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Taste symmetry
I Taste violations affect the pseudo-scalar meson sector most

I The quadratic mass splitting of non-Goldstone mesons and the Goldstone meson is of
order α2a2 (left panel).

I These splittings are to a good approximation mass independent

I The root-mean-squared (RMS) pion mass for asqtad, stout and HISQ (right panel)12:

mRMS
π =

r
1

16

“
m2
γ5

+ m2
γ0γ5

+ 3m2
γiγ5

+ 3m2
γiγj

+ 3m2
γiγ0

+ 3m2
γi

+ m2
γ0

+ m2
1

”
.

I Arrows on the right panel indicate T = 160 MeV on lattices with Nτ = 6, 8 and 12
(from right to left)
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12Bazavov, Petreczky (2010)
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Hadron masses and decay constants

I ρ, K∗ (left) and pseudoscalar decay constants (right) are shown

I Hadron spectrum on the lattice is heavier than physical, thus, at
non-zero lattice spacing one expects the transition region to be at higher
temperatures (and even more so for lattice actions with stronger cut-off
effects)
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Scale setting, r1

I The lattice spacing is determined from the static quark anti-quark
potential, which does not show any noticeable cutoff dependence.

I Sommer scale13 (
r2 dVqq̄(r)

dr

)
r=rn

=

{
1.65 , n = 0

1.0 , n = 1

r0 = 0.468 fm or r1 = 0.3106 fm is used to convert to physical units.
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13Sommer (1994)
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Scale setting with fK

I Setting the scale with a hadronic quantity, fK , may help to reduce the
cut-off effects

I An uncertainty in temperature set with r1 and fK scale is shown
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Scale setting with fK

I The strangeness fluctuations with the asqtad and HISQ action with r1

(left) and fK (right) scale
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Scale setting with fK

I The renormalized Polyakov loop with r1 (left) and fK (right) scale

I Notice that the cut-off effects are very different in the Polyakov loop and
fK , thus, using fK does not help
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Chiral symmetry restoration
Chiral condensate:

〈ψ̄ψ〉q,x =
1

4

1

N3
σNτ

Tr〈D−1
q 〉, q = l , s, x = 0, τ.

The susceptibility:

χm,q(T ) =
∂〈ψ̄ψ〉l
∂mq

= 2χq,disc + χq,con ,

χq,disc =
1

16N3
σNτ

{
〈
(
TrD−1

q

)2〉 − 〈TrD−1
q 〉2

}
,

and

χq,con =
1

4
Tr
∑

x

〈D−1
q (x , 0)D−1

q (0, x) 〉 , q = l , s.

The renormalized condensate:

∆l,s(T ) =
〈ψ̄ψ〉l,τ − ml

ms
〈ψ̄ψ〉s,τ

〈ψ̄ψ〉l,0 − ml

ms
〈ψ̄ψ〉s,0

or
∆R

l = d + ms r
4
0 (〈ψ̄ψ〉l,τ − 〈ψ̄ψ〉l,0).

A. Bazavov (BNL) Tc in QCD May 24, 2012 34 / 43



Chiral condensate

I Renormalized chiral condensate with r1 (left) and fK (right) scale
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Chiral susceptibility

I Disconnected chiral susceptibility with r1 (left) and fK (right) scale
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Chiral susceptibility
I Comparison of the disconnected chiral susceptibility with staggered and

domain-wall fermions (DWF), r1 scale, HotQCD (2012)
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I Good agreement in the location of the peak, extra support for the
validity of staggered studies

I DWF simulations are done at mπ = 200 MeV, note that for HISQ at
Nτ = 12 RMS pion mass is around 200 MeV
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Chiral condensate (scaling)
I In the limit of vanishing light quark masses and for sufficiently large strange quark

mass QCD is expected to have a second order phase transition in O(4) universality
class.

I Staggered fermions preserve only a part of the chiral symmetry, thus, the relevant
universality class in the chiral limit at non-zero lattice spacing is O(2).

I In the numerical analysis the difference between O(2) and O(4) is rather small, so we
refer to scaling properties as O(N) scaling.

I Previous studies with the p4 action demonstrated that even for non-vanishing light
quark masses, provided they are small enough, universal scaling properties can be
used to define pseudo-critical temperature.

I O(N) scaling analysis has been extended to asqtad and HISQ/tree.

I The multiplicatively renormalized chiral condensate (the order parameter in the chiral
limit):

Mb =
ms

T 4
〈ψ̄ψ〉l .

I At sufficiently low mass the chiral condensate is described by a universal scaling
function fG plus additional scaling violating terms:

Mb(T ,ml ,ms) = h1/δfG (t/h1/βδ) + at∆TH + b1H,

H =
ml

ms
, ∆T =

T − T 0
c

T 0
c

, h = H/h0, t = ∆T/t0.
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O(N) scaling analysis
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I The pseudo-critical temperature as function of light quark mass at
Nτ = 4 and 8 for the p4 action (left) and Nτ = 8 and 12 for the asqtad
action (right).

I Points represent the pseudo-transition temperature Tc determined from
the peak of the disconnected chiral susceptibility.

I Lines are predictions from the fits to the chiral condensate.
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Chiral condensate and susceptibility, HISQ

I Simultaneously fit the chiral condensate and susceptibility

I This gives dependence on the quark mass, determine the transition
temperature for each Nτ = 6, 8, 12

I For Nτ = 6 and 8 lower than physical, ml = ms/40 quark masses are
also available, Nτ = 6 is shown
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Combined extrapolation to the continuum
I Combined extrapolation using asqtad and HISQ data sets, quadratic for

HISQ and linear (left) and quadratic (right) for asqtad
I Notice, HISQ has substantially smaller cut-off effects
I The final result for the chiral transition temperature at the physical

quark masses in the continuum limit

Tc = 154± 9 MeV

(derived from the chiral susceptibility which diverges in the chiral limit)
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Back to deconfinement
I Probes of the deconfinement, i.e. the Polyakov loop or quark number

susceptibilities, show gradual rise in a wide temperature range
I Compare the behavior of the chiral condensate and the Polyakov loop

(left) and the chiral condensate and light and strange quark number
susceptibility (right)

I The deconfinement phenomenon happens gradually and is indicated by
full temperature dependence of various observables (inflection points are
not helpful here), therefore no unique temperature can be associated
with deconfinement
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Conclusion

I QCD at zero chemical potential at the physical light and strange quark
masses exhibits an analytic crossover between the confined and
deconfined phase

I Lattice QCD calculations with staggered fermions allow for calculations
at (almost) physical light quark masses

I Taste symmetry breaking in staggered formulation is by far the largest
source of cut-off effects

I Highly Improved Staggered Quarks action substantially reduces the
cut-off effects, allows for better control in the low-temperature phase

I Calculation with the HISQ action on lattices with the temporal extent
Nτ = 6, 8 and 12 at ml = ms/20 and Nτ = 6 and 8 at ml = ms/40,
relying on universal O(N) scaling in the chiral limit, gives at the physical
quark masses in the continuum limit the chiral symmetry restoration
temperature Tc = 154(9) MeV

I Deconfinement happens gradually, as manifested in the behavior of
various thermodynamic quantities in the wide temperature range, so no
unique temperature is associated with it
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